MATH 2050 C Lecture 22 (Apr 13)

Uniform Continuity (\$ 5.4 in textbook) Recall: Let f: A -> R. • f is cts at CEA <=> $\forall \in \mathbb{Z}$, $\exists \in \mathbb{Z}$
(3) = $\delta = \delta(f)$ > 0 s.t. $|f(x) - f(c)| < \varepsilon \quad \forall \ |x - c| < s$ ·f is cts on A <=> f is cts at EVERY CEA $(=) \forall C \in A, \forall E > 0, \exists S = S(E, c) > 0,$ st 1f(x)-f(c) 1< E V 1x-c1< S Cantron: The choice of S depends on BOTH & AND C. Example: $f:(0,\infty) \rightarrow iR$ $f(x):= \frac{1}{x}$ cts on $(0,\infty)$ $y = f(x) = \frac{1}{x}$ FOR THE SAME \$>0 f(c) If C≈o, then we need to choose a much smaller f(c) **8** st (f(x) - f(c) < E 4 1x - c < 8 Idea: This function is NOT "uniformly" cts

: S is NOT "uniform" in C

FOR THE SAME (>0

you can choose ONE & >0 st it works for ALL CEA 12(x)-2(c)1< 5 A 1x-C1< 8

Idea: This function is "uniformly cts.

Def?: f: A > iR is uniformly continuous (on A) ift VE 10, 38=8(2) >0 st.

/ f(u) - f(v) / < € A N' ∧ e ∀ ' In - ∧ I < 8

Remark: (1) uniform cts => Cts on A (: take V=CEA) (2) Uniform continuity is a "global" concept. It does NOT make sense to talk about uniform continuity at one point CeA.

Q: How to see if f: A -> IR is uniformly cts (on A)? We first begin with a "non-uniform contrinuity" Criteria.

Prop: f: A -> IR is NOT uniformly continuous K=> 3 Eo > O st V S > O . 3 Us. Vs e A st $|u_s - v_s| < \delta$ But $|f(u_s) - f(v_s)| \ge \varepsilon_0$ (1) Z=> Z Eo > O and seq. (Un), (Vn) in A st | un - vn | < h But |f(un) - f(vn) | > E. Unen Proof: Take negation of def" and choose S = h. Example: Show that f: (0,∞) → iR, fix)= +, is NOT Uniformly continuous on (0.00). $P_{roof}: Take (U_n) := (\frac{1}{n}) \text{ and } (V_n) := (\frac{1}{n+1}) \text{ in } (0,\infty).$ THEN, $|V_n - V_n| = |\frac{1}{n} - \frac{1}{n + 1}| = \frac{1}{n + 1} < \frac{1}{n}$ When But $|f(u_n) - f(v_n)| = |n - (n+i)| = 1 \ge \varepsilon_0 := \frac{1}{2} > 0$ By Prop. f is Not uniformly ets on (0.00). Exercise: Show that f: [a, 00) - R. fix = + is unitering cts on [a, 00) for any fixed a > 0. Idea: We can say more about "uniform continuity" of f: A → R if A is an interval. [Uniform Continuity Thm Continuous Extension Thm

Uniform Continuity Thm
f: [a,b]
$$\rightarrow R \implies f$$
 is uniformly cts
on [a,b]
Proof: Argue by contradiction. Suppose NOT, i.e. f is NOT
Uniformly cts. Then. by Non-Uniform contributing
cutteria, $\exists \Sigma_0 > 0$ and seq. (Un). (Un) in [a,b]
(x) --- [St. | Un - Vn | < $\frac{1}{2}$ But | f(Un) - f(Un) | $\frac{1}{2}$ Eo $\forall n \in \mathbb{N}$]
By Bolzano-Weiterstrags Thm, since (Un) is badd.
 $\Rightarrow \exists Subseq. (Unk) of (Un) St.$
 $\lim_{k\to\infty} (Unk) = x^{k} \in [a,b]$
 $\frac{ff:}{1} | Unk - Vn_{k} | < \frac{1}{1} \lim_{k\to\infty} a_{k+\infty} (U_{k}) = x^{k}$ by limit
 $\frac{1}{2} \lim_{k\to\infty} (V_{k}) = x^{k} = [a,b]$
 $external field for the field$

a cts function
$$\overline{f}: [a,b] \rightarrow i\mathbb{R}$$
?

$$(st \overline{f}(x) = f(x) \forall x \in (a.b).)$$

We will use the following lemma in the proof.
Lemme: Let f: A -> R be uniformly cts. THEN.
(Xn) Cauchy seq \Rightarrow (f(Xn)) Cauchy seq. in A in R
Proof of Lemma: Let 2 > 0.
By uniform continuity of f , $\exists S = S(\xi) > 0$ s.t.
$(\#) = \left[f(u) - f(v) < \varepsilon \text{ whenever } u, v \in A = u - v < s \right]$
Let (Xn) be a Cauchy seq in A. By E-H def ² ,
for this 8 > 0 above, 3 H = H(S) EIN st
$ x_m - x_n < S \forall n \cdot m \neq H$
By (#), If(∞)-f(∞) < E ∀n.m ? H
So. (f(x)) is Cauchy.