$MATH$ 2050 C Lecture 22 $(Apr 13)$

Uniform Continuity (§ 5.4 in textbook) Recall: Let $f: A \rightarrow \mathbb{R}$. f is cts at c e A \iff \forall $\xi > 0$, \exists $\xi = S(\xi) > 0$ st. $|f(x) - f(c)| < \epsilon$ \forall $|x - c| < \epsilon$ det f is <u>cts on A</u> \iff is cts at EVERY ce A $H(S, S)$ & = $S(S, C)$, $S(S, C)$ st $|f(x) - f(c)| < \epsilon$ \forall $|x - c| < \epsilon$ Caution: The choice of 8 depends on BOTH & AND C. Example: $f: (0, \infty) \to \mathbb{R}$ $f(x) := \frac{1}{x}$ cts on $(0, \infty)$ y $y = f(x) = \frac{1}{x}$ For the SAME ≥ 0 $f(c)$ If $C \approx o$, then we need to choose a mush smaller $f(c)$ 6 s.t.
 $|f(x) - f(c)| < \epsilon$ \forall $|x - c| < \epsilon$ Idea: This function is NOT "uniformly" cts

 \therefore S is NOT "uniform" in C

FOR THE SAME ESO

You can choose ONE & so St it works for ALL CEA

Idea: This function is uniformly cts.

 \overline{Det} : $f: A \rightarrow R$ is uniformly continuous (on A) $F: S \times S \times S \times S$ if if $S \times S$

 $|f(u) - f(v)| < \varepsilon$ \forall U, ve A, $|u - v| < \varepsilon$

Remark: (1) uniform cts => Cts on A (: take $V = C \in A$) ² Uniform continuity is ^a global concept It does NOT make sense to talk about uniform continuity at one point C C A.

 $Q:$ How to see if $f: A \rightarrow R$ is uniformly cts (on A)? We first begin with a "non-uniform continuity" criteria

 $Prop: F: A \rightarrow R$ is MOT uniformly continuous $\langle z \rangle$ \exists ϵ_0 > 0 st \forall δ > 0 . \exists u_s $,v_s$ e A $st | u_s - v_s | < \delta$ $\frac{P u T}{T}$ $| f(u_s) - f(v_s) | > \epsilon_0$ $\langle z \rangle$ \exists ϵ \circ \circ and seq. (u_n) . (v_n) in A $st | u_n - v_n | < \frac{1}{n}$ But $\left| f(u_n) - f(v_n) \right| > \varepsilon$ Vnew Proof: Take negation of def¹ and choose $8 = \frac{1}{n}$. b Example: Show that $f: (0, \infty) \rightarrow \mathbb{R}$, $f(x) = \frac{1}{x}$. is Not Uniformly continuous on Co ^A Proof: Take $(u_n) := (\frac{1}{n})$ and $(v_n) := (\frac{1}{n+1})$ in (v_n) THEN, $|u_n - v_n| = |\frac{1}{n} - \frac{1}{n+1}| = \frac{1}{n(n+1)} < \frac{1}{n}$ When $B\overline{a_1}$ / $\frac{1}{2}(m)$ - $\frac{1}{2}(m)$ | = | u - $(u+i)$ | = $T \geqslant 5$:= $\frac{1}{2}$ > 0 B y Prop, f is N_{eff} uniformly ats on (a, ∞) . b Exercise: Show that $f: [a, \infty) \rightarrow \mathbb{R}$. $f(x) = \frac{1}{x}$ is uniformly $C(t)$ on $[a, \infty)$ for any fixed $a > 0$. Idea: We can say more about "uniform continuity" of $f: A \to R$ if A is an interval. Uniform Continuity Thru

Continuous Extension Thin

Uniform Centrality Thm

\nf: [a,b] → R ⇒ f is uniformly cts

\ncts on [a,b] → R ⇒ f is uniformly cts

\nProof: Argue by contradiction. Suppose MOT, ie. f is NOT

\nuniformly cts. Then, by non-uniform continuity

\ncutten,
$$
\exists
$$
 20,00 and seq. (Mn). (Mn) in [a,b]

\nso, [s].

\n1. (Mn - Ma) < $\frac{1}{N}$ By [1 +0L) - f(U) | > 2.0

\nQ. (Mn) is bad.

\n3) \exists subseq. (Mn) of (Mn) set.

\n2. (Mn) 4. (Mn) set.

\n3. (Mn) 4. (Mn) set.

\n4. (Mn) 4. (Mn) set.

\n5. (Mn) 4. (Mn) set.

\n6. (Mn)

$$
a_{i}
$$
cts function $\overline{f}: [a,b] \rightarrow \mathbb{R}$?

$$
(st \quad \overline{f}(x) = f(x) \quad \forall x \in (a.b).)
$$

 \mathbf{Q}